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1. Introduction

The vibration analysis of composite circular and annular membranes has been studied in recent
years with results obtained using exact solutions, energy methods and finite element analysis. The
composite circular membrane is usually described in terms of variable density as a function of the
radius of the membrane. In this study the density is assumed to vary linearly along the diameter of
the membrane and it follows that density variation is nonaxisymmetric but there is one axis of
symmetry. For a complete vibration analysis the entire membrane must be modeled. The finite
element method is used and the element is formulated in polar coordinates since the variation in
density is described using polar coordinates. Results are given for frequency of vibration and basic
mode shapes are illustrated.
2. Governing equations

The method used by Strock and Yu [1] to describe the linear variation of thickness
for a circular disk will be used to describe the variation in density for a circular
membrane. A dimensionless parameter R that varies between zero and one is defined based
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. Variable density circular membrane.
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upon Fig. 1 as

R ¼ 1� rmin=r0; (1)

where r0 is the density at the midpoint of the membrane. When R=0 the density is constant r0 for
the entire membrane. When R=1 the density becomes zero at x ¼ �a and 2r0 at x ¼ a: The
density is constant r0 along the y-axis for all values of R. In terms of R and the polar coordinates
(r,y) the variable density is described following Ref. [1] as

r ¼ r0½1þ Rðr=aÞ cos y�: (2)

The governing equation for membrane vibration in (r,y) coordinates is
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where w ¼ wðr; y; tÞ is deflection, S is the constant membrane tension and r is the membrane
density defined by Eq. (2). Assume motion that can be described with circular frequency o;

wðr; y; tÞ ¼ W ðr; yÞeiot: (4)

An approximate solution can be formulated in terms of the functional

JðW Þ ¼

Z Z
A

S
qW

qr

� �2

þ
1

r

qW

qy

� �2
" #

� ro2W 2

( )
rdrdy: (5)

In this application the finite element method is used to obtain a solution for Eq. (3) via the
functional Eq. (5).
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3. Membrane finite element in polar coordinates

A nine node Lagrangian element is used to model the circular area of the membrane. The shape
functions are the same as those discussed by Buchanan and Peddieson [2] for modeling the cross-
section of a circular cylinder. The deflection of the membrane is assumed as

W ¼ ½N�fW g; (6)

where [N] are the shape functions and {W} are the nodal point unknowns. Eq. (5) leads to a
governing finite element equation that can be written as

½K �fW g � o2½M�fW g ¼ 0; (7)

where

½K � ¼

Z
A

½B�T½S�½B�dA; ½M� ¼

Z
A

½N�T½r�½N�dA: (8)

The [B] matrix is defined in terms of an operator matrix [L] and the shape function matrix. Eq.
(5) is used to define [B] as

½B� ¼ ½L� ½N� ¼
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Table 1

Frequencies O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffi
r0=S

p
for circular membranes with variable density

Mode R

0a 0.0 0.25 0.50 0.75 1.0

1 2.404 (0) 2.405 2.340 2.385 2.361 2.331

2 3.832 (1) 3.832 3.820 3.785 3.732 3.668

3 3.832 (1) 3.832 3.834 3.839 3.843 3.840

4 5.135 (2) 5.136 5.132 5.116 5.079 5.017

5 5.135 (2) 5.136 5.132 5.119 5.091 5.048

6 5.520 (0) 5.520 5.513 5.497 5.484 5.479

7 6.379 (3) 6.381 6.379 6.370 6.345 6.296

8 6.379 (3) 6.381 6.379 6.370 6.349 6.309

9 7.016 (1) 7.016 6.994 6.933 6.847 6.747

10 7.016 (1) 7.016 7.021 7.036 7.062 7.090

11 7.586 (4) 7.592 7.593 7.591 7.578 7.544

12 7.586 (4) 7.592 7.593 7.591 7.580 7.553

13 8.417 (2) 8.419 8.408 8.361 8.261 8.126

14 8.417 (2) 8.419 8.410 8.383 8.338 8.272

15 8.654 (0) 8.656 8.647 8.642 8.668 8.685

Numbers in parentheses correspond to the circular wave number for R=0.0 taken from Ref. [3].
aExact frequencies from Ref. [3].
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4. Frequency and mode shapes

Results for frequency of vibration have been computed for both circular and annular
membranes. The radius defining the interior boundary of an annular membrane in defined as b.
The nondimensional frequency O is defined as

O ¼ oa
ffiffiffiffiffiffiffiffiffiffi
r0=S

p
; (10)

where the outside radius of the membrane a, r0 and S are assumed to have unit values. It follows
that the nondimensional interior radius b/a can be any value between zero and one.
Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Ω10 Ω11 Ω12

Ω13 Ω14 Ω15

Fig. 2. Mode shapes for a variable density circular membrane with R=1.0 corresponding to Table 1 with the density

decreasing from left to right.
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Table 2

Frequencies O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffi
r0=S

p
for annular membranes with variable density, b/a=0.2, interior boundary fixed or free

Mode Fixed–fixed boundaries, R Fixed–free boundaries R

0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0

1 3.816 (0) 3.740 3.598 3.452 3.317 2.574 (0) 2.563 2.532 2.488 2.436

2 4.236 (1) 4.212 4.149 4.060 3.961 3.533 (1) 3.525 3.502 3.466 3.421

3 4.236 (1) 4.318 4.459 4.544 4.545 3.533 (1) 3.552 3.606 3.681 3.760

4 5.222 (2) 5.231 5.246 5.247 5.219 5.043 (2) 5.036 5.015 4.978 4.929

5 5.222 (2) 5.234 5.291 5.429 5.601 5.043 (2) 5.037 5.021 5.006 5.008

6 6.396 (3) 6.400 6.412 6.429 6.435 6.233 (0) 6.104 5.886 5.674 5.479

7 6.396 (3) 6.400 6.415 6.463 6.526 6.366 (3) 6.358 6.332 6.282 6.202

8 7.594 (4) 7.497 7.138 6.815 6.590 6.366 (3) 6.358 6.337 6.306 6.273

9 7.594 (4) 7.597 7.604 7.506 7.269 6.732 (1) 6.712 6.658 6.589 6.519

10 7.786 (0) 7.597 7.605 7.619 7.632 6.732 (1) 6.889 7.151 7.317 7.326

11 8.056 (1) 7.959 7.748 7.623 7.676 7.590 (4) 7.588 7.574 7.536 7.473

12 8.056 (1) 8.277 8.313 8.181 8.002 7.590 (4) 7.588 7.574 7.547 7.518

13 8.783 (5) 8.787 8.797 8.811 8.712 8.071 (2) 8.089 8.135 8.178 8.175

14 8.783 (5) 8.787 8.797 8.812 8.826 8.071 (2) 8.093 8.200 8.461 8.508

15 8.805 (2) 8.849 8.886 8.834 8.840 8.782 (5) 8.785 8.788 8.776 8.709

Numbers in parentheses correspond to the circular wave number for R=0.0.

Table 3

Frequencies O ¼ oa
ffiffiffiffiffiffiffiffiffiffiffi
r0=S

p
for annular membranes with variable density, b/a=0.5, interior boundary fixed or free

Mode Fixed–fixed boundaries, R Fixed–free boundaries R

0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0

1 6.246 (0) 5.902 5.538 5.226 4.959 3.588 (0) 3.494 3.338 3.188 3.052

2 6.393 (1) 6.236 5.966 5.697 5.453 3.917 (1) 3.890 3.820 3.727 3.625

3 6.393 (1) 6.537 6.389 6.175 5.996 3.917 (1) 4.018 4.161 4.219 4.197

4 6.814 (2) 6.857 6.806 6.656 6.473 4.762 (2) 4.779 4.813 4.835 4.827

5 6.814 (2) 6.978 7.192 7.138 6.998 4.762 (2) 4.784 4.882 5.093 5.308

6 7.458 (3) 7.512 7.616 7.622 7.531 5.886 (3) 5.900 5.943 6.008 6.072

7 7.458 (3) 7.520 7.836 8.084 8.067 5.886 (3) 5.900 5.948 6.064 6.328

8 8.270 (4) 8.311 8.440 8.583 8.611 7.135 (4) 7.146 7.182 7.247 7.335

9 8.270 (4) 8.311 8.481 8.943 9.147 7.135 (4) 7.146 7.182 7.256 7.425

10 9.200 (5) 9.234 9.350 9.551 9.705 8.424 (5) 8.432 8.448 7.970 7.563

11 9.200 (5) 9.234 9.354 9.707 9.742 8.424 (5) 8.432 8.460 8.482 8.101

12 10.212 (6) 10.244 10.350 10.285 10.218 9.604 (0) 9.014 8.460 8.512 8.597

13 10.212 (6) 10.244 10.350 10.557 10.245 9.712 (6) 9.378 8.912 8.514 8.625

14 11.285 (7) 11.317 10.927 10.594 10.759 9.712 (6) 9.717 9.378 9.008 8.660

15 11.285 (7) 11.317 11.370 10.769 10.809 9.714 (1) 9.717 9.735 9.546 9.238

Numbers in parentheses correspond to the circular wave number for R=0.0.
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Results for frequency of vibration for a circular membrane are given in Table 1. Exact
frequencies given by Rayleigh [3] are tabulated in the first column and the finite element solution
agrees with the exact solution for the 15 frequencies that are tabulated. Additional results for R
greater than 0.0 are tabulated. The mode shapes corresponding to R=1.0 are shown in Fig. 2 and
can be contrasted with the results given in Ref. [3] (R=0) for a circular membrane.
Additional results for annular circular membranes with variable density are given in Tables 2

and 3. Table 2 corresponds to an annular membrane with interior radius of 0.2 and both fixed and
free interior boundary condition. Numbers in parentheses correspond to the circular wave
number for a membrane with constant density, R=0.0. In some cases the results for the constant
density membrane could be compared with previous results [4] and the agreement was excellent.
Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Ω10 Ω11 Ω12

Ω13 Ω14 Ω15

Fig. 3. Mode shapes for a variable density annular membrane with R=1.0, a/b=0.5 and fixed–fixed boundary

conditions corresponding to Table 3 with the density decreasing from left to right.
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Ω1 Ω2 Ω3

Ω4 Ω5 Ω6
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Ω10 Ω11 Ω12
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Fig. 4. Mode shapes for a variable density annular membrane with R=1.0, a/b=0.5 and fixed–free boundary

conditions corresponding to Table 3 with the density decreasing from left to right.

G.R. Buchanan / Journal of Sound and Vibration 280 (2005) 407–414 413
Frequencies for membranes with interior radius of 0.5 are given in Table 3. The mode shapes for
membranes with R=1.0 are shown in Figs. 3 and 4. The mode shapes for fixed–fixed boundary
conditions are compared with those for the fixed–free boundary conditions. Again the numbers in
parentheses correspond to the circular wave number for a membrane with constant density.
5. Conclusions

The vibrational properties of a membrane with linear variation in density along a diameter have
been studied. The mathematical problem was formulated in polar coordinates and subsequently
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numerical results were obtained using a finite element that was formulated in polar coordinates.
Frequency of vibration was reported in tabular format and some mode shapes were presented as
contour plots of the membrane deflection. It appears that results of this type have not been
previously reported in the literature.
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